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W I T H A N O L I D E S  - A N E W  T Y P E  O F  P H Y T O S T E R O I D S  

A .  V.  K a m e r n i t s k i i ,  I .  G. R e s h e t o v a ,  
a n d  V.  A.  K r i v o r u c h k o  

UDC 547.926 

In recen t  y e a r s ,  to the types  of s t e ro ids  known prev ious ly  [1, 2] a s e r i e s  of new ones isolated f rom natural  
sou rces  of an imal  and vegetable  or igin has been added. 

Some of the newly d i scove red  types  of s te ro id  compounds a r e  of g rea t  in te res t  for  the i r  biological  p r o p e r -  
t ies .  Thus,  compounds p o s s e s s i n g  a s t e ro id  skeleton of the e rgos tane  type with a pyrau  r ing in the side chain 
fo rm a single biogenetic  group which is found in plants  of the family  Solanaceae.  New phytos te ro ids  (about 60 
compounds) have been isola ted f rom Acnistus,  Datura., Dunalia, J a b o r o s a  , Withania, and Nicandra  ph. and, a c -  
cordingly,  they have acquire  the names  of withanolides,  j aborosa lac tones ,  wi thaphysal ins ,  and nicandrins .  
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B i o l o g i c a l  A c t i v i t y  o f  t h e  W i t h a n o l i d e s  

The eno rmous  in teres t  shown in the new c l a s s  of  phytos tero ids ,  in the de te rmina t ion  of the i r  s t ruc tu re ,  
and in the development  of s chem es  of synthes is  has been  due to the i r  biological  act ivi ty.  Af te r  the f i r s t  r epo r t  
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[3] on the ant ieancer  activi ty of extracts  of the leaves of Acnistus a rborescens ,  the intensive investigations of 
Withania somnifera  Dun. ca r r i ed  out s imultaneously by groups under Levie, Adam, and Snatzke in var ious  
countr ies  led to the isolation of the active principal of these extracts  - withaferin A (4). The subsequent de- 
tailed study of the activi ty of withaferin A showed that in ext remely  low concentrat ions of 0.01-0.5% in water 
it inhibits the growth of plant cancer  cells [4]. In an investigation of its influence on Ehrl ich asc i tes  cancer  
cells [5] implanted into mice, it was found that withaferin A causes  the suppression of their  growth accompanied 
by their  complete disappearance in 80% of the mice. It is not known which s t ructura l  features are  responsible 
for this effect and it is possible that in the ant icancer  activi ty of the withanolides an important role may be 
played by s t ructural  elements both in r ings A/B and in the side chains. 

The present  review is devoted to a consideration of  features  of substitution in the s teroid skeleton and 
the determination of the s t ruc tures  of the side chains, and also to approaches to the partial  synthesis of these 
compounds. Questions of the presence of representa t ives  of this type in nature and methods for their  detection 
and isolation have been considered in the preceding paper of this issue [6]. 

At the present  time, about 60 representa t ives  of the type of steroids described have been isolated; their  
s t ruc tures  are  given in Table 1. 

The s teroid nature of the skeleton of the group of compounds under consideration is ascr ibed to them on the 
basis  of experiments  [7, 8] on dehydration with SeO~, which led to derivatives of cyclopentanophenanthrene and 
tr imethylnaphthalene.  All the withanolides, jaborosalactones,  and nieandrins, with the exception of compounds 
(15) and (17) are  charac te r ized  by a A2-1-OXO grouping in ring A for which absorption at 225 nm in the UV spec-  
t rum, bands at 1690 and 1660 cm -1 in the IR spectrum, and weak-field signals f rom the C-2 and C-3 vinyl p ro -  
tons at 6.18 and 6.97 ppm in the PMR spectrum (Table 2) are  charac ter i s t ic .  A considerat ion of the supple- 
mentary  s t ruc tura l  features in rings A/B enables these phytosteroids to be divided into a number of subgroups. 

C h a r a c t e r i s t i c s  o f  t h e  S u b s t i t u t i o n s  in t h e  S t e r o i d  S k e l e t o n  

Of the 60 new phytosteroids described,  14 contain a 4fl-hydroxy-5fl,6fi-epoxy grouping in addition to the 
A2-1-oxo sys tem and are  charac te r ized  by the corresponding signals in the PMR spectrum (see Table 2 for 
compounds 1-12) [7-14]. The altyl position of the 4-OH group is confirmed by oxidation to the eaedione (D [7], 
having dihydroquiaoid s t ruc ture  which can be present  only in r ing A of the s teroid skeleton. The presence  of 
an oxide ring in the 5,6 position is also shown by chemical  t ransformat ions  of the A2-hydrogenated system,  
leading e i ther  to the opening of the epoxide or  to its reduction. The identities of all the react ion products  have 
been shown s t r ic t ly  by the PMR method. The convers ion of (VI) into the dithioketal and its reduction followed 
by ozonization of the laetone group in the side chain - a 12-stage degradation of withaferin A (4) [1] to the known 
bisnor- (5~)-cholanic  acid (X) has served  as a proof  of the s t e r eochemis t ry  of the linkage of rings A, B, C, and 
D. This linkage of r ings A /B  is also shown by the positive sign of the Cotton effect in the CD spectra  at 340 nm 
in the region of the n ~ rr * t ransi t ion of the eL, f i-unsaturated ketone. It has been shown by t ransformat ions  of 
1,4-diketo sys tems  i somer ic  with respect  to the C-5 center  [15] that the 60 group at C-1 in A2-steroids makes 
the cis (5fi) A / B  ring sys tem more  stable than the t rans  (5~) system, which is explained by a decrease  of the 
nonbound interaction in the 5fi se r ies  between t he  1-keto group and the 11~ proton. 

It must be par t icu lar ly  noted that in a study of the t ransformat ions  of the A2-1-oxo-4fl-hydroxy-5/~,6~ - 
epoxide sys tem interest ing react ions have been found. Thus, on t rea tment  with p-TsOH in CH3OH nueleophilie 
addition of the solvent takes place at C-3 with the formation of 3-methoxy-2,3-dihydrowithafer in  A (XD [7], or  
a r ea r r angemen t  of the pinaeolone type is observed with the formation f rom withaferin A of the A-nor -2 ,5 -d i en -  
1-one (XH) and from dihydrowithaferin of the A - n o r - 5 - f o r m y l  derivative (XII1) [12] (see Scheme on following 
page.) 

Withanolides having no 5,6-oxide ring, of types (32 and 33), a re  distinguished by the absence of a signal 
at 3-4 ppm in the PMR spectra ,  but in the weak-field region they have the signal of a vinyl proton in the form 
of a doublet (in 33, 6 5.78 ppm) or  a multiplet (in 32, 6 6.00 ppm). A reflection of the 7-OH group in (33) is a 
one-proton doublet f rom 7-H at 5 3.84 ppm. 

A second large group consis ts  of withanolides with a polyenic sys tem in r ings A/B (21, 22, 29, 30, 34, 35) 
[9, 16, 17], in r ings A, B, and C - A2,5,s(14)-eompounds (14, 16, 18) [18] - ,  or  in r ings A, B, and D- -A  2'4'14(15)- 
compounds (19, 31) [10, 18]. They are  charac te r ized  by signals f rom the vinyl protons in the weak-field region 
of the PM_R spect rum (see Table 2). The position of the £~8(14) and A 1¢(15) bonds affects the downfield shift of the 
signal f rom the 18-CH 3 group (6 1.03 ppm in 16, 19, and 31 as compared  with, for example, 0.7 ppm in 4), while 

,4(15) in the case of a A bond there is a signal f rom the 15-H at 6 5.25 ppm. The positions of the double bonds in 
the compounds mentioned have been shown by chemical  t ransformat ions  into saturated sys tems or  epoxides. 
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The nature  of the mul t ip l i c i ty  and the pos i t ions  of the s igna l s  in the weak- f i e ld  region  v a r i e s  on pass ing  
f rom A 2 compounds to A3,5-withanolides (15, 17). To these  a r e  a s s igned  s igna l s  f rom the vinyl  p ro tons  at C-3 
and C-4 in' the fo rm of a doublet  of t r i p l e t s  at  5 5.62 and 6.08 ppm with a coupling constant  of 10 Hz [18]. The 
A3 '5 -he te roanau la r  diene shows abso rp t ion  in the UV s p e c t r u m  at kma x 232 am, e 24,000. 

A c o n s i d e r a b l e  uumber  of wi thauol ides  and n icandr ins  is  c h a r a c t e r i z e d  by 5 ~ - h y d r o x y - A 2 - 1 - o x o - 6 ~ , 7 c ~ -  
epoxy grouping (23-27, 42-47} [9, 17, 19-27]. Of the th ree  poss ib l e  pos i t ions  for a d i subs t i tu ted  oxide r ing in a 
17 - subs t i tu t ed  s t e r o i d  A2-1-ke toae  - 11,12;15,16; and 6,7 - the l a s t  was s e l ec t ed  on the b a s i s  of a c o mpa r i son  
of the p roduc t s  of the degrada t ion  of the side chain. The ~ o r ien ta t ion  of the 5 -hydroxy  group was a s s igned  on 
the b a s i s  of the coincidence  of the change in the chemica l  shift  f rom the 19-CH 3 group as  a function of the nature 

CDCI3 of the solvent (AS C6H5 =+ 0.26 ppm) and literature information for steroid 5~-l-ketones (+0.25 ppm). For 

the 56 isomers, this difference amounts to -0.12 ppm. The 5(~ stereoohemistry is also confirmed by the value 
CDCI 3 of A5 C5HsN = 0.07 and the pronounced negative sign of the Cotton effect in the region of the n -* ~* transition 

for enones at 338 nm in the CD spectrum. The ~ orientation of the 6,7-epoxide ring is shown, on the one hand 
by its preferential formation from the corresponding A 6 compounds and, on the other hand, by the direction of 
its opening by HBr-acid. From the preferential formation of the trans-diequatorial bromohydrin (XV) the in- 
fluence of a neighboring 5a-OH group was deduced. The traas-diaxial bromohydrin (XVI) obtained from (42) 
readily undergoes ring closure at the 5~-OH group to form the 5~,6~-epoxide (XVID. An x-ray structural 
analysis of the nieandrins [20, 29] has shown that ring A has a half-chair conformatio~ [C(5) below and C(2) 
above the plane of the ring] and r ing  B a h a l f - c h a i r  conformat ion  with C(9) below and C(10) above the plane of 
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TABLE 1 .  Compounds Isolated f rom Natural  Sources  

Structure and compositiort Name of the 
of the compound compound Source Literature 

HO 0 

c2s ~as os 

"% 0 

C~8 H4o O~ 

(~28 H3o 0 6 

4 OH 

G~s H3s O e 

0 .... g 

% 

*,a, 0 

C~o Hss 0 6 

27-Deoxywitha- 
I rerin A (43-hy- 
/ droxy- l -oxo-55 
I 63-epoxy-22R- 

witha-2,24-di- 

I . ertolide) 

(4~-Hydroxy-l- 
oxo-53 6~-eDox} 
-24,252dihvdro- 
22R-with-~- 
enolide) 

'4~-2~-Dihvdroxy. 
' -,1-oxo-5~,6B- 

epoxy-22R-witha 
-2,14,24-trienol- 
ide) 

Withaferirt A (4~. 
27-dihydroxy- l- 
oxo-5B,63-epox] 
-22R-witha-2,24 
-dienolide) 

I 14-Hvdroxy-gT- 
dcoxvwz~haferi~ 

A {4~-14 a - d i -  
hzdroxy- l -oxo-  
5B,6~-epoxy-  
22R- witha- 2,- 24 
-diertolide) " " 

Withania 
somnlfera 

Witha n la 
somnffera 

Wtthanta 
somnlfera, 
Wlthania 
aristata 

Wlthania 
somn tiera, 
Wtthanla 
arlstata, 
Acntstus 
arborescen~ 

Withania 
$o m n ff~ra 

(4 lS,17a -Dihy- 
droxy- l -oxo-5S 
6B-epox'¢-2.2R- 
witt}a-2,24-di- 
enoliae) 

Wlthan|a 
somnifera 

9,33.34 

33,34 

3.7--10, 
33,47 

9,32 
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T A B L E  1 (cont.) 

Structure and composition of Name of the 
the com r~und " comp °und Source Literature 

tO 

11 

~0 HO 0 

C2a Hs80~ 

Withanolide D 
(4 B,20a-dihy- 
droxy-l.oxo-5 B 
6 ~ -epoxy-22R- 
witha-2 ~24-di- 
enolide) 

I 
(4 ,~, 20a =Dihy-. 

6tS-epoxy-zo- 
dihyd'ro-'22R - 
with-2-enolide) 

%8%0, 

D•OH HO u 

l 

C~8 }t38 07 

. 

C~ H3s 13 7 

/ ~ ,OH 

C~ H~ 0 7 

(4 ~5,' 20~ro--25 t -Tri - 
" hYdroxy-l-oxe- 

5B, 6 ~-epoxy- 
22R-witha-2,24- 
dienolide) 

(43, 14a, 20a-Tri 
hxdroxy-l-oxo- 
5/5, 6 5-epoxy- 
2OR, 22R-witha- 
2,24-dienolide 

~/5, l~/a, 20a-Tri 
hy.droxy-t-oxo- 
5~, 6 5-ep0xy- 
20.S. J 2~-witha- 
2, 9.4 -dienolide) 

, W ithan ia 
somntfera 

Wlthanla 
somnlfera 

W It h an ia 
somuifera 

Wlthan la 
somn lfera 

Wlthan la 
somoifera 

10, 33, 34 

33, 34 

I 
f0 

I0 

I0 
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T A B L E  i (coaL.) 

StructUre and composition of Name of the Source Literature 
the compound compound 

12 

16 

I# 

~00 H 

G2e Hs80~ 

0 
C28 H38 07 

C2e Ha804 

% % % 

C2e H36 O~ 

4~, 7~, 20a-Tri- 
hydroxy-l-oxo- 
5~, 6 ~ - e p o ~ -  
22R-witha-2,24- 
dienolide) 

withanolide E 
(14a, 17~, 20- 
trihydroxy-l-oxo 
-5/3, 6 ~ -epox, y- 
17a-witha-2,24- 
dienoiide ) 

Withanolide O 1 
(20e/-hydrox~- 1- 
oxo-20R, 22R- I 
wiflla-2, 5,8(14)- 
24-tretraenolide) 

Withanolide I (20a 1 
-hydroxv-l-oxo-/ 
20R, 22R-witha- [ 
3,5,8(t4), 24-te-  
traenolide) 

Withanolide H (20a= 
2?-dihy droxy- 1- 
oxo-20R, 22R- 
witha -2, 5,8(14), 
24-tetraenolide) 

Acrl istus 
austxalls, 
Dunalia 
australia 

Wtthania 
somnlfera 

Withania 
somnlfera 

Withania 
somniiera 

Withania 
~omnlfera 

35--37 

I1,18 

18 

18 

18 
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T A B L E  i ( c o n t . ~  

T7 

StructUre and Composition of 
the compound 
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028 H36 O~ 

C~8 Hao 05 

Ig 

21 

20 

~ "OH. 

• ", 0 

HO O:, Hs8 0 5 
. . L '  

~ .OH 

C u Hs6 0 s 

Name of the 
compound 

Withanolide K 
dl ga, 20a-dih¥" 

roxy- l -oxo--  
20R, 29/~-witha - 
3,5,8(14), ?..,4- 
tetraenoltde) 

Withanolid¢ J 

~lT a, 20a-dihy'  
roxy°I-oxo- 

20K, 22R-witha- 
2,5,8(Z4), ~- 
tetraenolide) 

Withanolide L 
(17a, 20a-dihy" 
droxy--1-oxo- 

. 20R, 22R-wiMa 
2,6,14,gA-tetra- 
enolide) 

(5~, 17a-Dihy- 
droxy-l'-oxo- 
22R-witha-~6, 
24-trienotxae) 

Withanolide M 
l~a, 20-dihy- 

ox 7-1-oxo-14c 
15a-~pqxy-20g, 
2?.g-witha-2,$, 
24-trienolide) 

Source 

Wtthania 
somnifera 

Wlthania 
somnlt~ra 

Withania 
somntfera 

Withanla 
somnifera 

Wlthania 
somnlfera 

Literamr¢ 

18 

18 

18 

18 
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TABLE 1 (cont.) 
Structure and composition of Name of the 

the compound compound Source Literature 

23 

22 . . . .  

24 

C2e Hae 13 e 

0 ',, 0 

HO "0 
C2e H s8 0 s 

",d Q 

0 =~OH 
HO ~0 

%8 Hs8 06 

Withanolide F I 
(14a, 178, 20- | 
trihydroxy-l-ox~ 
17a-witha-2,5, } 
24 -trienolide) 

(5a-Hydroxy-l-oxo- 
6a. 9a-epoxy- 
29R-witha-'2, 
24 'dienolide) 

(5a, 17a-Dihy- 
droxy-l-oxo-6a, 
7a -epoxy -22R- 
witha-2,24-di- 
enolide) 

W lthan ta 
somnlfera 

Lye lure 
¢hinense 

Withanla 
somniferd 

25 "' (5% 20-Dihydroxy 
-1-oxo-6a, 7a- 
epOxy-22R- " 
witha-2,24-di- 

Withanla 

G28 Hae n ~6 

H O , . ~  

2e ~ 0  "~0 

,h ~0 
C2a i'-/~o 0 6 

0 ' " O OH j 
HO :0 62e Ham O: 

enolide) 

Withanolide R (5a 
23-dihydroxy-1- 
oxo-6a, 7a- . 
epoxy-22S, 23R- 
wirha-2,24-di- 
enolide) 

[Sa, 27-Dihydroxy 
-1-oxo-6a, 7a- 
epom/wi~h a -2, 
24-dtenolide) 

somn lfera, 
Wlthanih 
coagulans, 
Lycium 
ch h]ense 

Withania 
somnlfera 

Wtthanla 
somnlfera 

18 

24 

19, 24. 25 
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T A B L E  1 ( con t . )  

Structure and composition of 
the compound 

Name of the 
compound 

~8 HHOI~~" 0 
HO : ...= 

HO "0 0;8 H42 O~ 

£g 

30 

C28Ha80~ 

I 

C2e H= 0 s 

, . . . l ~ O  OH 
"OH 

G2 s Ha 6 05 

;]2 .~ 
HO 

C28 H36 0 s 

l a ,  3h, 5a-Trihy-. 
droxy-6a, 7a- 
epoxy-22R-witha 
24-enolide) 

(17a, 2'7-Dihy- 
drox.y-1, oxo- 
witha-2,5,24- 
trien01ide) 

17a, 27-Dihydroxy 
- 1-oxo-witha-2, 
5,24-tdenolide) 

Withanolide N 
(17a, 27-dihy- 
droxy- 1- oxo- 
witha-2,5,14,24 ° 
tetraenolide) 

Withanolide 0 
(45, 17a-d/hy- 
droxy-l-oxo- 
witha-2,5,8.(14). 
24-tetraenolzae) 

Source 

Withania 
somnifera 

Withania 
somn if era 

Wtthania 
somnlfera 

Wtthan ta 
som.ifera 

Wlthanla 
somnlfera 

Literature 

I0 

I0 
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TABLE 1 (cont . )  

structure and composition of Name of the 
the compound compound Source Literature 

.14 

37 

3a 

~ 0 H  
HO []28 Ha8 0 

I 

C28 H38 06 

~D 

6~8 H34 Oo 

~ 0 '~ . 

~8 Hse 0 s 

0 
C28 Has a s 

(48, 78, 20-Trihy- 
droxy-l-oxo-20R 
22R-witha-2,5, 
24-trienolide) 

Withanolide Q 
lTa, 23,2q-tri- 

droxy-l-oxo- 
S 22R-w[tha. 

2.5"24-t rienot- 
idc3 

Withaphysalin A 

Withaphysatin B 

[aborosalactone A 
(4-deoxywitha- 
fcrin A) 

Acnlstus 
austral ls, 
-Dunalla 
australis 

W i i h a n i a  
somnffera 

Physalis 
minima 

Physalis 
minima 

Jaborosa 
lntegrl fo l la  

35--37 

17 

39 

39 

16,30 
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TABLE i. (cont.) 

Structure and composition of 
the compound 

38 

39 

. -  OH 

HO ~.H= O= 

.= HO Ce 

% % % c~ 

~ OH 
%, 

4O 

Cl~ OH 
C28 Hag O~ Cl~ 

41 ~ Q H  

~a H, oO 6 

42 

H6 
H8 "~ 

G~ H~,4Q 6 

0 0 " 0 

• --" %: 

Name of the 
compound 

aborosalactone B 

laborosalactone C 

aborosalactone E 

]aborosalactone D 

Nicandrenone f 
(Nic-l) (5,26-di- 
hydroxy-6a, qa: 
22, 26: 24, 25- 
triepoxy-lq 
(I3-~lS)-abeo - 
5u. -e rgosta-2,18, 
15,16-tetraen-1- 
o n e  

Withanicandfin 
(Sa-hydroxY~l, 
12-dioxoZ6~a, Ta - 
epoxy-22R-wifl~ 
-2,24-dienolide 

Source 

Jaborosa 
~tegrifol la 

Jaborosa 
~tegr lfol i~ 

Jaborosa 
integrlfolia 

Jaborosa 
lnte~rlfolla 

Ntcandra 
physalo ides 

N k a n d r a  
physa lo  |de~ 

Literature 

16,30 

16,30 

16,30 

16,30 

23,28~29,41 

21 
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T A B L E  i (coat.)  

Structure and composition of Name of me 
the compound compound Source Literature 

o4 H 

~28 H3~ [17 

-1.0 

G rT-~ 

:. %! 
HO "(] ;a H,~o 07 

-"/'-U",oH:. 
47 ~ O ~  

[;28 H4Q &' 

~ 'OH 

C28 HaB O~ 

Nie-3 (20S,22R, 
24S 25S. 26R-5 
26- ~tihyd'roxy-6d 
qa; 22,26; 24,25~ 
triepoxy-5a-er- 
gost-2-en-1- 
one) 

Nic-7 (20S, 22R, 
~4S. 25S 26R- 
5,26- dih)droxy- 
6a, 7a; 22, 26; 
24, 25-triepoxy- 
5a-ergost-2-ene- 
1,12-~lione) 

Nic-ll (5,25,26- 
T rihydroxy- 6a, 
~/a: I7,24: 22,26- 
triepoxy-5a, 17a 
-ergost-2-en-1 ~ 
one) 

Nic-2 (5,1qg, 26- 
trihydroxy- 6a, 
'/a: 22, 26; 24, 
25-triepoxy-5a, 
17a-ergost-2-en. 
-1-one) 

15a, 17a-Dihy- 
drox~(-l,12-di- 
OXO- 6a, 7a ~ 
epoxy-22S- 
witha-2,24- 
dienolide) 

Nlcandra 
physaloides 

Nicandra 
physalolde~, 

Nicandra 
physalo tde 

Nlcandra 
physalo|des 

Datura 
quercifolla 

20, 22 

20 9') 7 " - -  

2022 

22 

38 
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TABLE I (cont.) 

Structure and composition of Name of the 
rite compound compound Source Literature 

4g 

50 

51 

0 = OH 

C2e Hs8 0 5 

0 • = OH 

u,, % H,,, O, 

I 
Withanolide P 

(14a, lql~-dihy- 
droxy-1, exo- 17o 
=witha-2,5,24- 
trienOlide) 

4B-Hydmxywitha- 
nolide E (4B, 14~ 
lqB, 20-tetrahy- 
droxy-i -oxo- 5B, 
6•-epoXy- 17a- 
witha-2,24- dt- 
enolide) 

(4/~-H y droxy- 1- 
e oxo-SB, 6B- 

epoxy-22R- 
witha-2,14, - 
24- trienolide) 

Withanta 
somnifera 

Physal is 
peruviana 

Withania 
somnifera 

110 
Csa Hs60s 

5£ ~ "gH - 

1328 Hss 0. 7 

Daturalaetone (5a 
12a, 17a-trihy- 

Datara 
querc ifolia 

droxy-l-oxo-6a, 
7 a- epoxy -22 S- 
witha-2,24-di- 
enolide) 

(4B-Hydroxy-1- 
oxo-5S, 6~.-qp- 
ox-/_- 22R-wima- 
2, 14, 24-tri- 
enolide) 

Wlthania 
artstata 

lO 

40 

47 

48 
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TABLE i. (cont.) 

Structure and composition of Name of the Source Literature 
the compound compound 

54 

55 

0 "'~ 0 OH 

028 H4o 06 

.... ; 0 S HO ' 

• " , , ~ 0  OH 

56 ~'OH 

HO 028 H~8 0 

~7 

58 

. . . .  ~ 0  OH 

HO C28 H4 ° OG 

O 0 OH 

O~HO . ~;~ ' C~ H~7 0 e CZ 

2,3-Dihydrowitha, 
ferin A 

la ,  14a-Dihy- 
droxy-22R-witha. 
5,24-dienolide 

(4B, lqa, 27-Dihy- 
dmxy-l-oxo- 
22R-witha-2, 5, 
2.4'trienolide ) " 

'4B, 17a, 27-Tri- 
hydroxy-l-oxo- 
2~R-witha-2,24- 
dienolide) 

(6a-Chloro-4B, 5• 
'27-trihydroxy- l -  
'oxo-22R-witha- 
2, 24- dienolide) 

Withania 
aristata 

Wlthan la 
aristata 

Withan|a 
frutescens 

W tthan la 
i frutescens 

w it ban ia 
frutescens 

48 

48 ¸ 

49 

49 

49 

the r ing .  The 5 a - h y d r o x y  group does not f o r m  hydrogen bonds.  The p r e s e n c e  of a 12-keto  func t ion  in wi th -  
a n i c a n d r i n  (43) is  shown by  the d i f fe rence  of the 18-CH 3 c h e m i c a l  sh i f t s ,  a m o u n t i n g  to +0.38 ppm (compare  6 
0.85 ppm in 24 and  25, and  6 1.11 ppm in 43) (see Scheme on fol lowing page.) 

The m o s t  i n t e r e s t i n g  a spec t  of the compounds  unde r  c o n s i d e r a t i o n  is  the s t r u c t u r e  of t h e i r  s ide cha in  in 
pos i t i on  17. A c o m m o n  f r a g m e n t  of the wi thanol ides ,  j a b o r o s a l a e t o n e s ,  and  wi thaphysa l in s  is a s i x - m e m b e r e d  5 ,  

- u n s a t u r a t e d  l ac tone ,  while  the u i c a u d r i n s  oon ta in  an epoxylac to l  r i n g  a t t ached  to the p r e g n a n e  ske le ton  a t  C(20). 
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,8 : =  8r 
• .o  OR 

a 7 : 3  
XIV - "  XV 

HO 

"OR 
ltO Br .," OR' 

b 
XVI XVII 

HO OR 

S t r u c t u r e s  o f  t h e  S i d e  C h a i n s  

The 5-1actone s t ruc ture  has been shown by t ransformat ions  [7, 8] amounting e i the r  to catalytic hydro-  
genation with the hydrogenolysis  of the allylic 27-hydroxy group, leading to deoxy der ivat ives ,  or  to the ozono-  
lys is  of the oL, f l-unsaturated lactone grouping, and the formation in both cases  (from the hydroxy and the deoxy 
derivatives) of one and the same fl-hydroxy ketone (XVIII) enabled the p r i m a r y  OH group in withaferin to be 
assigned to position 27. The upfield shifL of the signal f rom the 21-CH 3 group in the PMR spect rum [doublet in 
(XIX) at 1.08 ppm to 0.97 ppm in (XX)] confirmed the position of the secondary CH 3 group at C-20 in withaferin 
A. Hydrogenation of the A 24 bond of the 27-deoxy analog is far slower than that of the A 2 b o n d ,  and subsequent 
alkaline t rea tment  and lactonization leads to epimerizat ion at C-25, as has been shown on deuterated specimens  
[7]. In chemical  t r ans format ions  of the 2,3-dinydrowithanolides the formation of the 27-methyl  ether  (XX1), 
which is unusual for alkaline conditions, is observed,  and this has been explained [7] as a p rocess  involving the 
el imination of an OH group accompanying the Michael addition of a molecule of solvent by the following mech-  
anism:  

.. l~OR =. OR 0 I~ 0 {~ 

The 27-deoxy analogs of withaferin A have two methyl groups on a te t rasubst i tu ted double bond, giving in 
the PMR spect rum a broadened s ix-proton signal at 1.90 ppm, which is cha rac te r i s t i c  for all the withanolides 
with a s imi la r  substitution of the 5-1actone in the side chain. The presence  of a -CH2OH grouping at C-25 in 
withaferin A (4) and also in the jaborosalac tones  (37--41) [16, 31, 30] is shown in the PMR spect rum in the form 
of a two-pro ton  singlet f rom the two equivalent methylene protons at 4.35, or  4.90 for CH2OAc. 

The signal f rom the C-22 proton in the PMR spect rum is ex t remely  charac te r i s t i c  for all the withanolides 
[9, 16, 29-34], and its shape and position a re  appreciably affected by substituents at C-20, C-17, and C-23. In 
actual fact, in compounds having no OH groups at C-20 the same multiplicity of the signals at 4.22-4.40 ppm is 
observed  in the form of a doublet of t r ip le ts  with constants  of 12 and 3.5 Hz caused by coupling with the three  
vicinal protons  at C-20 and C-23 (1-5, 23, 27, 28, 30, 37-41, 43; see Table 2), which conf i rms  the constant 
s t c r e o c h e m i s t r y  of the withanolides at C-22. The doublet of t r iplets  f rom the C-22 proton appears  in a weaker  
field when such a descreening group as OH at C-17 is near  by. In the ease of the 17~-hydroxy withanolides (6, 
20, 24, 29, 31, 32) [9, 10], this signal appears  in the same form at 5 4.63-4.7 ppm. The presence  of a th i rd  
hydroxy group at C-17 has been shown by the react ion of the 2 ,3-dihydro der ivat ives  with t r i ch loroace ty l  iso-  
cyanate,  in which derivat ives  are  formed for which a low-field signal f rom the NH of the carbamate  residue 
(6 8.43 ppm) is charac te r i s t i c .  The localization of an OH group at C-17 is shown by dehydration with the aid 
of SOC12, the A 17(2°) and A 16 der ivat ives  formed showing the same position and shape of the signals f rom the 
C-22 proton. To determine the orientation of the 17-OH group a compar i son  of the values of A5  in the NMR 
spec t rum in CDC13 and CsHsN has been  used. As is well known, in sa turated cycl ic  sgs tems  protons  prcment in 
the 1,3-diaxial posit ions to an OH group show an upfield shif~ by 0.2-0.4 ppm (~SCDHC~). In the present  case ,  

for the 18-H, 21-H, and 22-H signals the values of A are--0 .01,  --0.16, and --0.2 ppm. Although in actual fact 
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T A B L E  2. 

Npm. bet I 
ot me I 2 - H COITI- i 
pound ] 
in Tabl~ 

1 
1 6,20d 

10 
2 6,2t d, 

I0 
3 6,23d 

I0 
4: 6.18d 

10 
5 6,18 d 

10 
6 6.26 d 

I0 
7 6.21 d 

10 
8 6.2O d 

10 
9 6,29d 

I0 
tO 6.26 d 

10 
I1 6.27 d 

10 
12 6.41 d 

10 
50 6,30 d 

10 
15 

17 

14 5.83dq 
10;3;1 

16 5,88dq 
10;3;1 

18 5,84dq 
I0;3;I 

19 5,89dq 
10;3;I 

21 5,91 dq 
10;3;i 

31 5,90dq 

29 5,90dq 

34 5,92 d~ 
10;3;1 

30 5,99 d~ 

35 5,90dq 

20 5,91 

32 ~6~d 
33 f~91d 

36 6,03dq ~ 

26 5.85dq 
10;3;1 

27 5,81 

42 7688,dt 

43 5,81 dq 
10;3;1 

C h a r a c t e r i s t i c s  o f  the  P M R  S p e c t r a  o f  the  W i t h a n o l i d e s  a n d  N i c a n d r i n s  

3-H 

7,08 dd 
10;6 
7,07d 
6 
7.00dd 
10;6 
6,97 dd 
10;6 
6,95 dd 
I0;6 
7,O8 dd 
I0;6 
6,97 dd 
10;6 
6,96 dd 
10;6 
7,09 dd 
10;6 
7.06 dd 
10;6 
708dd 
10;6 
7,3 dd 
10;6 
7.08 dd 
10;6 
5,62 dt 
lO 
5,64dt 
10 
6,76dq 
10;5;2,5 
6,83,dq 
10;5;2,5 
6,83dq 
10;,5;2,5 
6,81d¢( 
10;5;2,5 
6,81 dq 
10;5;2,5 
6,83 dq 

6,94 dq 

6,86 dq 
10;,5;2,5 
6,83dq 

6,83dq 

6,66 

6,83dd 
10;4,7 
6,76dd 
I0;4,7 . 
6,9!dq 

6,56 d4 
10;4,5;3 
6,61 

6,62:m 

4-H 

! 

4,66~ 
4,7 
4,64d 
4,7 
3,15 

3,23 

3.21 

3,26 

3,20 

3,23 

3,25 

3,25 

3,25 

3,26 

3,3~ 

3,26 

3,53( 

3,31 

5,71 

5,78d 

i 
1,05dd [ 
L5;2 I 

3i d 

6-H 7--H 

4 

4 

4 

4 

4 

4 

4 

3,82 

13,3,~dd 
4,1 I 

3,3~1d ' 
4;1 
4, 0 m 

[3,40dq 
[ 4;1 

6,60 dq 
10;4.5;3 

22 H 

4,37dt 
12;3,5 
4,31dr 
11;3 
4,41 dt 
12;5 
4,40dr 
12;3,5 
4,50 

4,7dt 

4,25dd 
12;5 
4 16dd 
1 b, 5;4 
4,29 dd 
12;6 
4.91 dd 
12;6 
4,51 dd 
145;3 
4,36dd 
12;5 
4,78 dd 

4,25 dd 
11,5;4,5 
4,66dd 
10;5 
4,21dd 
10;6,5 
4,30 dd 
10;6,5 
4,62 dd 
10,5;5,5 
4,70 dd 
11;5 
4,70t 

8 
4,6 6dt 

4,70dt 

4,42" 

4,48dt 
12;3,5 
4,62dd 
12;4,5 
4,63dt 

4,68 

4,25dd 
12,5 
4,58 dd 

4,73dd 
3,5;2 
4,46dt 
12;3,5 
3,87m 

4.40dt 
12;3,5 

26- 

4,98s 

1,05 s 

1,07s 

1,06~' 

1,21s 

1,24s 

1,03 

0, 85s 

0,87s 

0,7~ 

9.85s 

0,98 

0,92s 

0,80s 

0,78.¢ 

,lls! 

19--CH~[ 

I 

1,43s 

1,39s 

1,41s 

1,40s 

1,41~ 

1,40~ 

1,39~ 

1,41~ 

1,38 

1,88~ 

1,41~ 

1,40! 

1,39s 

1,25s 

1,26s 

1,24s 

1,26s 

1,28s 

27 and 28-CH3 

1,91 

1,11d 1,21d 
66  
1,91 

2,03 

1,91 

1,90 

1,91 

1,17d 1,21d 
6 6 

2,06 

1,95 

1,95 

1,C~ 1,88 

1,89 1,95 

1,87 1,94 

1,88 1,95 

1,91 

2,06 

1,90 

1;93 

1,90 

Other signals 

15--H 5,58 

25-.OCHe 4,35s 

25- OCH~ 
4,90 

25--OCH 2 4.90 

15--H 5,26 
5 

15--H 3,58 s 

1,25 

1,25 

1,25 

1,26 

2,07 15--H 5,25 
25--OCH~ 4,93 

2,07 25--OCH s 4,90 

23-H 4,42 
25--OCH2 4,42 

2,06 25--OCH24,90 

1,3Gs 

1,21s 

1,50 

1.46s 

1.2 5s ] 

1,17 1 

1,18s 

1,24s 

1,95 

1,90 

1,83 1,97 

1,85 1,96 

1,93 

1,97 

2,06 

1,33 1,35 

1,92 

1 8 - H  5,17 , 

23--H 5,63d 
2 

25--OCH~ 4.9s 

15--H 4.0 m 
16--H 7,38d 

1 5 3  



TABLE 2. 

corrl- 
pound 
in ? able 

48 

44 

45 

46 

47 

24 

28 

39 

411 

41 

(oont.) 

2~H 

5,85~i 
10 
5,67d 
I0 
5.56d 
tO - 
5,96d 
I0 
5,8d 
10 
5.81d 
10;3; 1 

6,06( 
11 
5,96d 
11;2 

3-H 

6,50d@ 
10;4,5;3 
6,61dd 
I0;4,8;3 
6,52 dd 
10;5;3 
6,50dd 
10;3,4;8 
6,6dq 
3;4 
6,60d 
10;4,5;3 
5,52 

6,8ra 

6,8r~ 

6,8 m 

4-H 

2,76 

I 6-H 

,92, 

3 

3? 
~:~7 
,38 

1 
5 2 

7 - H  

~.42 d 
4;1 
h14 

1,05dI 
4 
kl7dc 
5 
~.0 

3.34d( 
4;1 
3,31 dd 
4;1 

~-H 

4,55m 

3,92m 

4.15m 

3,8d 
7 
4,63 dt 
8;5;3 
4,41dt 
12;3,5 

4,46dt 
12;4 

1 47'92d 0.72s 
5,36s 1,0 d 

6, 
5,0 1.0d 

7 
,04d 

,01 d 

0,99d 
7 
17,05 d 

,84d 

iS- CHs119- CH~ 

1,13 1,26 

0,7s 1,32 

1,04: 1,32 

0,60 1,45 

0.8~: 1.18 

0,75 0,85 

0.71 1,12 

0,78 1,37 

0,~ 1,66 

27 and 28--CH a 

1,52 1.58 

1,27 t.07 

1.16 1.27 
1,18 1,40 

1.4 

1.90 

1,92 

2,04 

2.12 

2,12 

Other signals 

I -H 3,68 

25-OCH2 4,38 

25--OCH~ 4,93 

25-OCH2 4,73 

*The upper lines give the chemical  shifts (ppm) and the lower l ines the coupling constants  (Hz); s) singlet; d) 
doublet; t) t r iplet ;  dd) doublet of doublets; dt) doublet of t r iplets ;  q) quartet;  m) multiplet; dq) doublet of quartets .  

the 17a-OH and 22a -H are  not included in such a system,  it is considered probable that such a rigid conforma-  
t ion is p r e f e r r e d  for the C(17) -C(20) bond in which the 17-OH group and the 22-H atom are  located With respec t  
to one another  in a position s imi lar  to the 1,3-diaxial position, which causes  a solvent shift for the 22-H signal 
[9].  

H 

XX~I XXIII O' ~ 

In the withanolides having a 20-OH group (7-10, 12, 14-16, 25, 33) [10, 16, 18, 19, 33-37], the 22-H signal 
appears  in the PMR spect rum in the form of a doublet of doublets at 4.25-4.30 ppm with constants of 12 and 
5-6 Hz. For  the 20- t r i ch lo roace ty lea rbamates  cha rac te r i s t i c  singlets a re  found ia the PM_R spec t rum at 5 8.70 
ppm, and the signals  f rom the 21-CH a and 22-H protons are  shifted downfield (5 1.30 and 4.86 ppm, r e s p e c -  
tively) [18]. To show the o~-orientation of  the 20-OH group a compar ison of the positions of the s ignals  in the 
PMR spec t ra  f rom the C-18 CH~ and C-21 CH 3 groups with the corresponding signals of 20~-  and 20f l -hydroxy-  
choles tero ls  has been used as a cr i ter ion.  Chemically,  the presence  of the 20-hydroxy function is shown by the 
dehydration of  24-25-dihydroder iva t ives  of the withanolides. 

.... O H , ~  0 COOMe 

XXlV XXv XXV! 

For withanolides (11, 13, 17-19, 21) containing simultaneously 17(z and 20~-hydroxy groups [10, 11, 18], 
the signal f rom the C-22 proton has the form of a doublet of doublets and is shifted dov~field to 5 4.70 ppm 
through the descreening influence of the 17a-OH group, aud the s i ~ a l  from the 21-CH 3 group is shffLed to 5 
1.25 ppm - through the desereening influence of the 20-hydroxy group. The presence  of two t e r t i a ry  OH groups 
has been shown by es ter i f tca t ion  with t r ich loroace ty l  isocyanate in the manv~r descr ibed  above. 

Pa r t i cu l a r  interest  is p r e s e n t e d  by the p r e s e n c e  in nature of  14-hydroxywithanolides,  since such subst i -  
tution i s  c h a r a c t e r i s t i c  for  e a r d e u o l i d e s ,  bu fad ieno l ides ,  and e e d y s o n e s .  A p r o o f  o f  the p r e s e n c e  o f  a 14-OH 
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group in (5) [32] consis ted in obtaining As(14) and A 14 dehydration products.  It is a lso found that t hes igna l  from 
the C-18 CH 3 group is shifted downfield by 6-7 Hz as compared with the 14-deoxy analogs. The presence  of two 
OH groups at C-20 and C-14 (10) [10] is shown by reaction with t r ichloroacety l  isocyanate when, as in the case 
of the mono-20-hydroxy derivat ives,  the signal from the 21-CH 3 group is descreened and is found at 6 1.25 ppm. 
Thanks to the appreciable influence of the 14~-hydroxy group on the C-18 CH3, the signal of the lat ter  is shifted 
downfield as compared with withanolide D (7) by 0.17 ppm and appears  at 5 1.00 ppm. 

14~,17fi,20-Trihydroxywithanolides (13, 22, 50) with the ~ s t e r eochemis t ry  of the side chain, which is 
unusual for natural s teroids,  have also been isolated [10, 11, 18, 32, 40]. 

In withanolides with a 23-hydroxy group in the 6-1actone ring (26, 34) [17], the substitution at C-23 sub- 
staatially affects the nature of the 22-H signals in the PMR spectrum. Although the shape and position of the 
signal f rom 22-H in (34) are  s imi la r  to those for other withanolides (doublet of doublets at 5 4.80 ppm), never-  
theless ,  in contras t  to the 20-hydroxywithanolides,  in which the signal is split because of coupling with the two 
protons at C-23 into signals with constants of 12 and 5 Hz, in this case the coupling constants are  considerably 
smal le r  (3.5 and 2 Hz) solely because of ax i a l - ax i a l  interaction. 

The influence of the acetate group at C-23 on the positions of the signals of the protons close to the sub- 
stituent in position 23 has been studied. It:was found that the signals f rom the 18-CH 3 and 21-CH 3 groups are  
shifted upfield, while the signal f rom the 22-H is shifted d0wnfield by 0.4 ppm. As a model shows, the 23- 
acetate group re s t r i c t s  rotation around the C(20)-C(22) bond and, as a result ,  in the most  p re fe r red  conforma-  
tion the 18- and 21- protons prove to be more remote  from the C-23 substituent (34) than in its hydroxy analog, 
while the 22-H is present  c lose r  to the 17~-OH group and, thus the la t ter  descreens  it. This interpretation is 
confirmed by a compar ison of PMR spect ra  in CDC13 and in CsHsN. 

As is well known, the influence of pyridine is due to a hydrogen bond with a hydroxylic oxygen. In the 
23-hydroxy compound (24), pyridine coordinates with the 23-OH group and in ter feres  with rotation about the 
C(20) -C(22) bond in such a way that the distance between the 23-OH and 18-CH 3 groups increases  and the s ig-  
nal f rom the 18-CH 3 group shifts upfield; correspondingly,  the protons close to the 23-OH and 17-OH groups 
a re  considerably descreened and their  signals shift downfield (21-CH3, 22-H). In the 23-acetate ,  where pyridine 
does not coordinate with the acetoxy group, the signals f rom the 21-CH 3 and 22-H protons (close to the 17-OH 
group) are  shifted downfleld, while the signal f rom the 18-CH 3 group does not change its position. 

Withaphysalins A and B (35, 36) differ somewhat in the nature of their  side chains [39]. Although they also 
contain an c~,/3-unsaturated 6-1actone r ing at C-20, in each of them the 20-hydroxy function is included in an 18, 
20-1actone grouping. In these c i rcumstances ,  the 22-H atom gives a doublet of doublets in the PMR spect rum at 
6 4.65 ppm. The presence  of an oxygen atom at C-20 affects the position of the signals f rom 21-CH 3 group in 
the weak field at 1.51 ppm in the form of a singlet. The conclusion of the presence  of an 18,20-1actone r ing is 
made on the basis of the absence of a signal from the 18-CH 3 group and the s trong descreening of the 21-CH 3 
group. The v e r y  existence of an 18,20-1aetone r ing determines  the s t e reochemis t ry  at C-17; the possibil i ty of 
a 17~ side chain is excluded. So far as  concerns  the configuration at C-20, although both possible orientations 
of the OH group (~ and/3) permit  ring c losure  with the formation of a y- lac tone,  the ce s t e reoehemis t ry  is con-  
f i rmed by biogenetic arguments :  in all 20-OH withanolides, just as  in the physalins,  the configuration at C-20 
is ce. The s t e reoehemis t ry  at C-22 is the same as in all the withanolides (see below). The presence  of a 14c~- 
OH group in (35) is confirmed by its dehydration to a A 14(~5) derivative and the s te reodi rec ted  perac id  epoxida- 
tion of the z£ 5 bond on the corresponding derivative to  an ce-epoxide, which is connected with the ~ configuration 
of the 14-OH group. It is considered that the 14ce orientation is preferable  biogenetically by analogy with the 
14ce-hydroxywithanolides (5, 10, 13, 22). Withaphysalin B (36) has in the same 18, 20 position a laetol grouping 
which, on oxidation with CrO3, is converted into a 3' - lactone. The s t ruc ture  of the acetate of the laetol is con-  
f i rmed by the low-field position of the signal f rom the CHOAc group at 6 6.17 ppm. 

In the nieandrins (44-47) [20], the lactone ring in the side chain that is cha rac te r i s t i c  of the withanolides 
is replaced by an epoxylactol group, and its oxidation leads to a 24,25-epoxywithanolide. A study of the s t ruc -  
ture  of the nleandrins by X - r a y  s t ructura l  analysis  [20] has shown that in r ing E the C(23)-C(26) a toms are  
located in approximately the same plane as  the 24,25-oxide ring, 0(22) lies in the same plane, and C(22) is be-  
low the main plane of the other five atoms.  Nicandrin (45) differs f rom (44) by the presence  of a carbonyl 
group at C-12 (which is analogous to withanicandrin) [20, 21, 40], and this is shown in the appearance of a s ig-  
nal f rom the 18-CI-I~ group in the PMR spect rum in a considerably weaker field than for  (44), at 6 1.04 ppm. 
Nicandrin (47) has an o~ side chain that is unusual for natural s teroids and a 17/3-hydroxy group. The a s s ign-  
meat  of the t e r t i a ry  OH group to C-17 is based on the use of a shift reagent  and on double-resonance technique 
[22]. The 17-OH group determines  the position of the signal f rom the 18-CH 3 group in the PMR spect rum of (47) 
in a weaker field (6 1.10 ppm) as  compared  with 17-deoxynicandrin (44) (6 0.70 ppm). 
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Compound (47) is apparen t ly  a biosynthet ic  p r e c u r s o r  of (46), which contains a dioxabicyelo[3,3,1]nonane 
s y s t e m  at  C-17 with an iso side chain. X - r a y  s t ruc tu ra l  ana lys is  of (46) showed [20] that the 1 7 - 2 0  bond is 
axia l  (c0, and the C(17) -O bond is equator ia l ,  in con t ras t  to (44), which has a 17fi equator ia l  side chain. In the 
dioxabieyclo[3,3,1]nonane sys t em,  r ing E has a sl ightly d is tor ted  boat conformat ion with the C(17) and C(23) 
a toms  below the main plane of the ring. The subst i tueuts  C(16) and C(28) a r e  equator ia l  in re la t ion to the r i n g  
and C(13), C(21), 0(22), and C(25) a r e  axial .  

Ring F a s s u m e s  the cha i r  conformat ion  with the equator ia l  subst i tuents  0(26), C(27), and C(28) and the 
axia l  subst i tuents  O(17), C(20), and 0(25). The biosynthet ic  re la t ionships  between the nicandrins  (44--47) a re  
shown inthe Scheme. The i r  poss ib le  p r e c u r s o r  is 24-methy l -24 ,25-d ihydrocho les te ro l ,  the success ive  oxida-  

t ion of which leads  to (44) :-~ (45) (47). Here ,  (46) may  be fo rmed  by in t r amolecu la r  opening of the 24,25- 
epoxide r ing by the 17~-OH group. The s t e r e o c h e m i s t r y  of (46) ag r ee s  with the t r an s -d i ax i a l  opening of the 
oxide. The hypothesis  has been put fo rward  that (46) is a lso  a biosynthet ic  p r e c u r s o r  of an e x t r e m e l y  unusual 
nicandrin that has been detected in nature  with an a roma t i c  r ing D (42). I ts  b iosynthes is  includes the oxidation 
of the angular  18-CH 3 group, the c leavage of the C(13) - C(17) bond, and C(18)-~ C(17) r ecyc l i za t ion  [21-25]. The 
s t ruc tu re  of (42) was ass igned  f r o m  the r e su l t s  of an x - r a y  s t ruc tu ra l  ana lys i s  [24] and has been conf i rmed  by 
chemica l  t r a n s f o r m a t i o n s  into A24-1actones forming  analogs  of the withanolides.  The PMR spec t rum of (42) 
d i f fers  f rom those of the other  nicandrins  only by the p r e sence  of s ignals  in the weak-f ie ld  region at 5 7.38 and 
7.0 ppm. 

In addition to PMR spec t r a ,  an e x t r e m e l y  informat ive  method for de termining  the s t r u c t u r e s  of the side 
chains of the withanolides is m a s s  s p e c t r o m e t r y  since the d i rec t ion of f ragmenta t ion  under  e l ec t ron  impact  is 
de t e rmined  by the number  and posi t ions of  the OH groups in the side chain and by the s te ro id  skeleton.  Three  
d i rec t ions  of f ragmenta t ion  a r e  poss ib le :  a, b, and c. In the absence  of 17- and 20-hydroxy groups and, in 
pa r t i cu l a r ,  in the withaphysal ins  (35, 36) route ha," i .e. ,  c leavage of the C(20)-C(22) bond p redomina te s  in the 
m a s s  spec t r a  of the A 24 compounds,  and the s t ronges t  peaks  a r e  those  with m / e  125, M + -  125, and M + -  125 - 
18. The p r e s e n c e  of an ion with m / e  127 shows the p r e s e n c e  of a sa tu ra ted  lactone grouping. Weaker  peaks  
a r e  fo rmed  on c leavage by route "b," i .e. ,  at the C(17)-C(20) bond: m / e  M + -  153. This  type of f ragmenta t ion  
is c h a r a c t e r i s t i c  of compounds {1-4, 23, 27, 28, 30, 37-41, 43). 

OH ,0% 
o . . . . . . .  °M 

H I ]  ; . .  " "° 

xxvll (44) (471 

o = ; : o  

(461 
(45) ",49) 

The p r e s e n c e  of a 20-OH group faci l i ta tes  the c leavage of the C(20)-C(22) bond, and t he re fo re  the 20-  
hydroxy-  AZa-withauolides (7-9, 12, 14-16, 25) a r e  c h a r a c t e r i z e d  by the s t ronges t  f r a g m e n t s  with m / e  125 and 
M + - 125 and f r a g m e n t s  with a v e r y  low intensi ty  having m / e  169 and M + -- 169 (route rob") [37]. The absence  
of a 20-hydroxy group and the p r e s e n c e  of a 17-hydroxy function intensif ies  f ragmenta t ion  by route ~c~: c l e av -  
age at the C(13)-C(17) and the C(14)-C(15) bonds. The absence  of peaks  with m / e  209 (212) leads  to the con-  
clusion that a 17-hydroxy group is absent .  In the m a s s  spec t r a  of  compounds (6, 20, 24, 29, 31, 32) they a r e  
e x t r e m e l y  intensive.  The p r e s ence  of OH groups at  C(17) and C(20) fac i l i ta tes  f ragmenta t ion  at the C(17)-C(20) 
bond, i .e. ,  route  "b. n Consequently the p r e s e nce  in the m a s s  spec t r a  of  compounds (11, 17-19, 21) of an intense 
ion with m / e  169 con f i rms  the posi t ion of the OH groups  in the molecule  at  C(20) and C(17). 
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In the 17,23-dihydroxywithanolide (34), the main peak in the mass  spectrum is due to cleavage by route 
"b W and the elimination of water:  m/e  295 (M + -  157 - 18). There  a re  also two considerable f ragments  with 
m/ e  342 and 324 which are  assigned to the cleavage of the lactone i tself  at the C(22)-C(23) bond and the O - C  = 
O grouping [17]. In compounds containing 14-hydroxy or 14,20-dihydroxy groupings (5, 10, 13, 22), in contras t  
to the 17,20-diols, where cleavage at the C(17)-C(20) bond is predominant,  the peak a r i s ing  through the c leav-  
age of the C(20)-C(22) bond with m/e  (M + -  125 - 1 8 )  are  intensified [10]. 

C o n f o r m a t i o n a l  F e a t u r e s  o f  t h e  S i d e  C h a i n s  

A conformational study of s ix -membered  lactones by x - r a y  s t ructura l  analysis  has shown that the e a r -  
bonyl group, the e s t e r  oxygen atom, and the two neighboring carbons atom lie in a common plane, i.e., the 
saturated lactone ring must  have e i ther  the half -chair  or the half-boat conformat ion.  Both conformations,  with 
small  differences in energy,  have been found in the crystal l ine state [33]. A convenient method for determining 
the p re fe r r ed  conformations of saturated lactones in the withanolides (2, 8, XXVIII-XXX) has proved to be c i r -  
Cular diehroism, since it was important only to know the configuration at C-22. In the jaborosalaetones  (37-41), 
having the same side chains as the withanolides (3, 4), the R configuration at C-22 was established by compar -  
ing the CD curves  with those of the lactone of parasorbic  acid (XXX1), showing a positive Cotton effect at 250 
nm [42]. All the withanolides having s imi lar  CD spectra  are therefore  considered as possessing22(R) s t e r e o -  
chemis t ry .  Exceptions are  compounds 48 and 52 [38, 47]. In view of the 22R configuration and the equatorial 
orientation of the bond between the lactone and the s teroid skeleton, from a considerat ion of models it may be 
concluded [33] that a positive sign of the Cotton effect in the region of the n ~ r*  transi t ion of saturated lactones 
at 215 nm must cor respond to a hal f -chair  conformation, and a negative sign to a half-boat conformation. In the 
lactone ring of (XXVIII), a compound obtained by the catalytic hydrogenation of (4), the CH 3 groups at C-24 and 
C-25 must be present  in the cis  position. The sign of the Cotton effect for {XXVTII) in the 215 nm region is 
negative and, therefore ,  the existence of two half-boat conformations is possible with the methyl groups fi- 
oriented in A - b  and (~-oriented in D - b .  

The choice between these conformations was made 

in chemical  shifts due to solvents in the PMR spectrum,  

after  the use of the well-known idea of the difference 
CDC13 

A5 C6H5 , from which it is c lear  that the proton of the 

methyl group present  in the c~-position to the keto group has a considerable value of A5 (in the strong-field 
direction) if this group is axial and a v e r y  small  one (in the direct ion of weak fields) if it is equatorial .  The 

CDC13 of s imi lar  magnitude for the 25-CH 3 group in (XXVIII, XXIX, XX) of 4.5, 5, and small  solvent shifts A6 C6H6 

4 Hz permit  the conclusion that the 25-CH 3 groups in the neighborhood of the lactone earbonyl are  s imi lar ly  
oriented in all the compounds mentioned, and this orientation is equatorial.  

Taking these facts into account, for the lactoae (XXVIID the half-chair  conformation A - b  was finally 
selected. The positive sign of the Cotton effect in the region of the n - -  7r* transit ion for (XXIX) leads to the 
conclusion that (XXIX) has the B - C  half-chair  conformation in which the CH 3 groups at C-24 and C-25 are  
t rans-diequator ia l .  It is possible that (XXIX) is the equilibrium product of the hydrogenation of (4). On the 
basis  of the negative sign of the Cotton effect in the region of the n--* ~* transit ion and the solvent shift in the 

CDCI 3 
PMR spect rum A6 C6H6 , approximately 4 Hz, the laetone r ing in (8) has the C - b  conformation. In the all the 

the proposed s t ruc tu res  for the laetones (XXVIII-XXX, and 8) (A-b ,  B - c ,  C -b ) ,  1,3-diaxial interactions are  
r~ luced  to a minimum. 
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S y n t h e s e s  o f  W i t h a n o l i d e s  

The f i r s t  synthet ic  invest igat ions in the field of the withanolides were  d i rec ted  to the crea t ion  of the di-  
hydroqulnoid f r agmen t  in r ing A and the epoxide format ion  in r ing B. J apanese  worke r s  [43, 44] have developed 
a s t e r eose l ee t i ve  synthes is  of 1-oxo-5fi ,6f l -epoxyeholes t -2-en-3f i -o l  as  a model of compound (A). 

0 0 0 ~ [ ~  NH'~NH2 ~ ' , ~  OH - 0 ~-~' 
0 ~ . ~ ' .  Jo.~ • . ' : v % ~  Poc h 

,0 "A l.I OAc ~l OAc c I C~ 

1 
o "° ~ " R = . s  OR. 0," 

Lavie  et al.  [45] have put fo rward  a pa r t i a l  synthes is  of  the s t r u c t u r e s  of r ings  A / B  containing, in addition to 
subst l tuents  of types  A and C, a l so  B and D, not only in the eholestane but a l so  in the 17fi-acetoxyandrostane 
and 20f i -acetoxypregnane s e r i e s ,  

O~ NaBH4" 
CsH4(CO~H)COaH OH 
LiAIH 4 

Ac20 
c,'o3 
Az~os 

0 

D 

A par t i a l  syn thes i s  of the side chain of the withanolides has been p e r f o r m e d  [46] f r o m  the 20-aldehyde 
(XXXII) by condensat ion withe acetone and the use  of the R e f o r m a t s k y  reac t ion  with ethyl ~ - b r o m o p r o p i o n a t e ,  
cycl iza t ion of the resu l t ing  dihydroxy e s t e r  giving the ~ , f l -unsa tura ted  5 - lae tone  r i n g  at C-20. The s t e r e o -  
c h e m i s t r y  at C(22), evident ly  so impor tan t  for  the manifes ta t ion  of biological  ac t iv i ty  is a l r eady  p re sen t  in the 
stag~ of study (see Scheme on following page.) 
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S T R U C T U R E  O F  T H E  P E C T I C  A C I D  O F  M a t r i c a r i a  c h a m o m i t l a  

A .  I .  Y a k o v l e v  a n d  A .  G.  G o r i n  UDC 547.917 

A wa te r - so lub le  po lysacchar ide  complex  has p rev ious ly  been isolated f rom the r a c e m e s  of Ma t r i ca r i a  
c hamomi l la  L. (German chamomile)  and its mono-  and po lysaechar ide  composi t ion has been studied [1-4]. We 
have now inves t iga ted  the s t ruc tu re  of the pect ic  acid found in the f rac t ionat ion of the initial complex  [3]. 

In the f i r s t  s tage  of the invest igat ions,  the po lysacchar ide  was subjected to enzymat ic  hydrolys is .  The 
products  were  found to contain mono- ,  di, t r i - ,  and t e t raga lac tu ron ic  acids and galac tose ,  a rab inose ,  and xylose.  

Pe r ioda te  oxidation of the pect ic  acid at  +15°C was complete  in 24 h. The consumption of sodium m e t a -  
per iodate  was 0.81 mo le  pe r  anhydro unit. Consequently, the po lysacehar ide  does not have a s t rongly  branched 
s t ruc tu re .  The oxidation product  was isola ted f rom the reac t ion  mixture ,  [~ ]D-85  ° (c 2% in water) ,  and was 
hydrolyzed.  By p a p e r  ch rom a t og raphy  {PC), weak spots  of galacturonic  acid and rhamnose ,  and a lso  of xylo-  
galaetose  were  found in the hydrolyzate .  

The par t ia l  acid hydro lys i s  of the pect ic  acid was then c a r r i e d  out. A p o l y m e r  was isolated f rom the 
hydrolyzate  with [~]D +347° (c 0.2% in wa te r  in the f o r m  of the sodium salt). The phys icochemica l  p r o p e r t i e s  
and IR spec t r a  of the po lysacchar ide  were  close to those of the products  of par t i a l  hydro lys i s  obtained p r e v i o u s -  
ly f r o m  the pectin subs tances  [5]. 

The pect ic  acid was methyla ted  by H a k o m o r i ' s  [6] and P u r d i e ' s  [7] methods a f t e r  p r e l i m i n a r y  e s t e r i f i c a -  
t ion with a 1 M solution of sulfur ic  acid in methanol and reduction of the earboxyl ic  e s t e r  groups with sodium 
t e t r a h y d r o b o r a t e  to p r i m a r y  alcohol groups  [8]. Chromatography  of the methyla ted  po lysacchar ide  on A1203 
gave only one spot ,  showing homogeneity.  The IR spec t r a  contained no absorp t ion  bands in the region of hydroxy 
groups.  This  d e m o n s t r a t e s  that the p r o c e s s  of methylat ion had gone to completet ion.  

In an invest igat ion of the degradat ion  products  f r o m  the methyla ted  po lysacchar ide  by  PC,  a complex  set  
of  methyla ted  mouosaccha r ides  was obtained, and t he re fo re  no fur ther  study was continued a f t e r  they had been 
s epa ra t ed  on a coumn of cel lulose  [7]. 

The isolat ion of cons iderab le  amounts  of  fully methyla ted  L - a r a b i n o s e  and D-xylose  indicates  that  the 
co r respond ing  sugar  r e s idues  fo rm a covalent  bond with the main skeletal  s t ruc tu re  of the po lysacchar ide  in the 
f o r m  of individual b ranches .  The s ame  can be said about the D-ga lac tose  isola ted f r o m  the degradat ion products  
in cons iderable  amounts .  

The isola t ion of 2 , 3 , 6 - t r i - O - m e t h y l - D - g a l a c t o s e  as  the main component  indicates the p r e s e n c e  of a sk e l e -  
tal  s t ruc tu re  cons is t ing  of D-ga lac tu roa ic  acid r e s idues  connected by 1 ~ 4  bonds. The cons iderab le  posi t ive  
specif ic  optical  ro ta t ion  of the po lysacchar ide  shows the a configurat ion of the glycosidic  bond. In the molecule ,  
the ga lae turonic  acid r e s idues  a r e  p r e s en t  in the py ranose  form,  a s  is shown by the IR spec t rum,  which has a b -  
sorpt ion  bands at 1000-1110 cm -1 (vibrat ions of a pyranose  ring) [9, 10]. The isolat ion of 3 , 4 - d i - O - m e t h y l - L -  
rhamnose  p e r m i t t e d  the assumpt ion  that  rhamnose  is included in the main po lysaechar ide  chain by 1 ~ 2 bonds. 

Thus,  the main po lysacchar ide  chain of the pect ic  acid  f rom German  chamomi le  cons is ted  of r e s idues  of 
a - D - g a l a e t u r o n i c  acid in the py ranose  fo rm linked by 1 ~  4 glycosidic  bonds. Single branchings  cousis t ing of the 
neut ra l  monosacc ha r i de s  ga lac tose ,  a rab inose ,  and xylose a r e  poss ib le .  
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